
Resource

De novo fragment assembly with short mate-paired
reads: Does the read length matter?
Mark J. Chaisson,1,3 Dumitru Brinza,2 and Pavel A. Pevzner2

1Bioinformatics Program, University of California San Diego, La Jolla, California 92093, USA; 2Department of Computer Science

and Engineering, University of California San Diego, La Jolla, California 92093, USA

Increasing read length is currently viewed as the crucial condition for fragment assembly with next-generation sequencing
technologies. However, introducing mate-paired reads (separated by a gap of length, GapLength) opens a possibility to
transform short mate-pairs into long mate-reads of length � GapLength, and thus raises the question as to whether the
read length (as opposed to GapLength) even matters. We describe a new tool, EULER-USR, for assembling mate-paired
short reads and use it to analyze the question of whether the read length matters. We further complement the ongoing
experimental efforts to maximize read length by a new computational approach for increasing the effective read length.
While the common practice is to trim the error-prone tails of the reads, we present an approach that substitutes trimming
with error correction using repeat graphs. An important and counterintuitive implication of this result is that one may
extend sequencing reactions that degrade with length ‘‘past their prime’’ to where the error rate grows above what is
normally acceptable for fragment assembly.

[Supplemental material is available online at www.genome.org.]

The field of high-throughput sequencing has grown recently in both

applications and computational support. This is enabled by the many

platforms that exist for high-throughput sequencing, including those

produced by 454 Life Sciences (Roche) (Margulies and Egholm 2005),

Illumina 1G Genome Analysis System (www.illumina.com), Applied

Biosystems SOLiD Sequencing (www.appliedbiosystems.com),

and Helicos GSS Sequencing (www.helicosbio.com). Although the

454 sequencing platform is now producing reads that are of similar

length to Sanger reads, the underlying paradigm is that a higher

throughput may be achieved at the sacrifice of read length. The

technologies with the highest throughput currently available

produce short, 20–40 base reads, distinguished as ultrashort reads.

Many recent successful applications of ultrashort reads have

used the reference genomes for whole-genome resequencing (Hillier

et al. 2008), chromatin remodeling mapping (Schones and Zhao

2008), and whole-genome methylation (Barsky et al. 2007) pro-

filing. An analysis in Whiteford et al. (2005) showed that the

number of reads uniquely mapped to the human genome grows

with the increase in read length, but reaches a plateau after the first

»40 nt (nucleotides). This implies that there is little incentive to

increase the read length in resequencing applications, since it pro-

vides little return on investment. While generating 40-nt reads is

usually sufficient for resequencing, de novo fragment assembly may

require longer reads. The Illumina platform can easily generate

longer reads, but the error rates deteriorate after the first 35 nt,

making the ends of reads not suitable for fragment assembly. This

again provides little incentive to generate longer reads. By extending

the effective length of reads, our EULER-USR assembler generates

more reads that span the repeats, and thus improves the assemblies.

Most de novo assemblers for Sanger reads follow the ‘‘overlap-

layout-consensus’’ paradigm that is optimized for such reads (Huang

et al. 2003; Jaffe et al. 2003) and does not scale well for short-read

assembly. In contrast, most approaches to short-read assembly in-

cluding EULER-SR (Chaisson and Pevzer 2008), Velvet (Zerbino and

Birney 2008), and ALLPATHS (Butler et al. 2008) use an alternative

Eulerian approach that model the assembly problem as a search for

a Eulerian path in a de Bruijn graph (Pevzner et al. 2001).

The advantage of the Eulerian approach is that it generates

a theoretically optimal assembly of reads of length k (in high-

coverage projects) by essentially mimicking fragment assembly as

a Sequencing by Hybridization (SBH) problem on a virtual DNA

array with all k-mers (Pevzner 1989). Idury and Waterman (1995)

demonstrated how the Eulerian approach for SBH can be applied

to fragment assembly of Sanger reads. However, the Eulerian ap-

proach works best for error-free reads and quickly deteriorates as

soon as the reads have even a small number of base-calling errors.

To alleviate this limitation, two different error-correction approaches

are used: error correction in reads prior to assembly (Pevzner et al.

2001; Butler et al. 2008), and post-hoc graph corrections that

remove spurious edges from the assembled de Bruijn or A-Bruijn

graphs (Pevzner et al. 2004; Zerbino and Birney 2008).

Correcting errors in reads prior to assembly was shown to be

useful for both Sanger and 454 reads (Pevzner et al. 2001; Chaisson

and Pevzner 2008) (error rates reduced 40-fold from 1.2% to 0.03%

for Sanger reads). However, this approach essentially transforms

already rather accurate reads (»1% error rate) into nearly error-free

reads. The efficiency of the existing error correction approaches

quickly deteriorates with even a small increase in the error rates of

original reads (e.g., from 1% to 3%). For example, an optimized

error correction tool from Tammi et al. (2003) was able to reduce

the error rates from 3.4% to 0.3% on simulated data, only a 10-fold

decrease. While it looks like a reasonably low error rate, it makes

it nearly impossible to apply the Eulerian approach that does not

tolerate even such seemingly small error rates. This makes the full-

length Illumina reads ‘‘ineligible’’ for Eulerian assembly (Fig. 1

illustrates that the error rate is »20% at the ends of reads) and

sets an accuracy bottleneck for developing new sequencing tech-

nologies.

In this work we focus on the Illumina technology and de-

scribe how to increase the ‘‘usable’’ length of error-prone Illumina

reads while keeping them nearly error-free. Although this study

3Corresponding author.
E-mail mchaisso@bioinf.ucsd.edu; fax (858) 534-7029.
Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.079053.108.

336 Genome Research
www.genome.org

19:336–346 � 2009 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/09; www.genome.org

limits the benchmarking of EULER-USR to the Illumina technol-

ogy, our algorithm is applicable to any technology characterized

by high error rates, such as the Helicos platform. While the average

error rate in Illumina reads is under 2% for the first »30 nt, it

quickly increases in the tails of the reads reaching »20% at posi-

tion 50. No existing short-read assembly tool can efficiently deal

with such high error rates, and the conventional wisdom is that

the read tails become unusable when the error rate exceeds 3%.

Below we introduce an alternative error-correction approach that

uses the de Bruijn graph constructed on the accurate read prefixes

in order to correct the error-prone read suffixes by fitting them

into the de Bruijn graph. Since EULER-USR can assemble error-

prone reads, we hope that it can catalyze developments of se-

quencing platforms aimed at generating longer but less accurate

sequencing reads.

Reads may be combined with mate-paired information to

further improve the quality of assemblies, and the next generation

of sequencing companies are actively pursuing both increasing

the read length and effectively generating mate-pairs. For exam-

ple, Illumina recently increased the effective read length from 35

to 50 nt and announced plans to provide capabilities for 75–100 nt

reads in 2009. On the other hand, Illumina and various se-

quencing centers are exploring applications of jump and PET li-

braries (Ng et al. 2006) for generating mate-pairs in the context of

short-read technologies. While increasing the read length is a high

priority for most next-generation sequencing companies, there

exists an opinion that the read length almost does not matter if

one uses mate-paired reads. Indeed, Pevzner and Tang (2001)

demonstrated that most mate-pairs: ‘‘readstart-GAP of length d-

readend’’ can be transformed into mate-reads: ‘‘readstart-SEQUENCE

of length d-readend’’ by filling in the gap of length d with the nu-

cleotide sequence representing an appropriate path in the de

Bruijn graph. As a result, one can generate contiguous long reads

of length 2 � l + d (span of mate pairs) from short mate-paired reads

of length l, making the read length almost irrelevant (typically,

d >> l).

We show how EULER-USR utilizes mate pairs to significantly

improve assembly, and further use it to answer the question of

whether read length matters. We demonstrate that the answer to

this question is closely linked with the efficiency of transforming

mate pairs into mate-reads (the percentage of mate pairs success-

fully transformed into mate-reads). When the read length exceeds

a certain threshold, the read-length barrier, the efficiency reaches

nearly 100%, so that the read length, indeed, does not matter. For

example, for the Escherichia coli genome, the read-length barrier is

»35 nt.4 This is good news for technologies with reads already

longer than 35 nt (e.g., Illumina reads) but bad news for tech-

nologies with shorter reads (e.g., Helicos and SOLiD reads). How-

ever, while the current parameters of Illumina reads may be

already sufficient for reliable assembly of some bacterial genomes,

they are not sufficient for slightly larger genomes like Saccharo-

myces cerevisiae with higher read-length barriers. This observation

reveals a synergy between EULER-USR error-correction approach

to increasing the read length and EULER-USR approach to trans-

forming mate pairs into mate-reads. Indeed, while the length of

the ‘‘usable’’ portions of Illumina reads is currently below the read-

length barrier for yeast, EULER-USR error correction allows one to

increase the effective read length beyond the read-length barrier.

Therefore, while the mate-paired information represents by far the

most important factor for improving the assembly quality, the

read length also provides a valuable contribution to the assembly.

The EULER-USR software for assembling mate-paired short

reads is publicly available at http://euler-assembler.ucsd.edu.

Methods
We have developed the EULER-USR algorithm for assembling mate-
paired and error-prone ultrashort reads. In addition to the previous
Eulerian approaches (Pevzner et al. 2001) that correct reads based
on k-mer multiplicities, EULER-USR corrects reads based on how
they map to repeat graphs (Pevzner et al. 2001; Chaisson and
Pevzner 2008), a generalization of the de Bruijn graphs.

The de Bruijn graph of a genome is constructed on the set of all
k-mers in the genome. Vertices u and v are connected by a directed
edge (u, v) if there is a (k + 1)-mer in the genome that has the k-mer u
as a prefix and the k-mer v as a suffix. A small example of a de Bruijn
graph is shown in Figure 2A,B. As a result of this construction, every
substring of length >k in the genome maps to a unique path in its de
Bruijn graph. Similar to the de Bruijn graph of a genome (Fig. 2C),
one can construct the de Bruijn graph of reads (Fig. 2D) on the set of
all k-mers present in reads. The de Bruijn graphs of real genomes are
very complex, a reflection of a large number of repeats with slightly
varying repeat copies. A repeat graph of a genome (or reads) is
a ‘‘simplified’’ version of the de Bruijn graph with small bulges and
whirls removed (Fig. 2E,F; Pevzner et al. 2004; Myers 2005). The key
observation in the Eulerian assembly is that the repeat graph of
a genome can be approximated by the repeat graph of reads, and
thus may be constructed from reads alone, i.e., without knowing
the genome (Fig. 2, cf. E and F; Pevzner et al. 2004).

If the repeat graph of the genome is known, one may correct
errors in a read by simply mapping this read to a path in the repeat
graph and substituting the read by the path.5 While this procedure
would result in a nearly error-free set of reads, it is not clear how to
construct a repeat graph from inaccurate reads and how to further

Figure 1. The positional profile of base-calling errors for Illumina reads
for 2 million 50-nt-long reads from a human BAC. The error rate across
reads is shown (solid line) along with the error rate for reads with a fixed
number of errors. The erroneous nucleotides in each read are detected by
mapping the read to the reference genome. The high error rate in posi-
tion 6 is due to the bias in our particular data set rather than a systematic
problem with the Illumina technology.

4We emphasize that the read-length barrier depends on the genome, the
span of mate-pairs, coverage, error-rates in reads, variability in gap length,
etc. The read-length barrier »35 nt for E. coli was computed under the as-
sumption that the span is 300 6 30 nt.
5This procedure may also result in error corruption (Pevzner et al. 2001).

Genome Research 337
www.genome.org

De novo assembly of short mate-paired reads

map such reads to the repeat graph. In our approach, we construct
the repeat graph from (accurate) read prefixes and then map entire
reads (with inaccurate suffixes) to this graph by threading.

The EULER-USR algorithm consists of the following three
steps that can be further supplemented by the threading pro-
cedure that we will describe later (see Assembling error-prone reads
[error-correction by threading]):

1. Detecting accurate read prefixes and correcting errors within
them using frequent k-mers. This operation generates the set of
extremely accurate (nearly error-free) read prefixes.

2. Constructing the repeat graph on error-corrected prefixes using
k-mers.

3. Simplifying the repeat graph after transforming mate-pairs into
mate-reads.

Detecting and error correcting accurate read prefixes

Although the quality of Illumina reads deteriorates with length,
the prefixes are quite accurate (<2% error rate). While many reads
can be turned into error-free reads by our error-correction algo-
rithm, errors will remain in low-quality reads even after error
correction. In this case, it is important to detect the longest read
prefix that may be error corrected and discard the reads that can-
not be corrected.

We correct reads using a modified version of the Spectral
Alignment (SA) algorithm described in Pevzner et al. (2001) and
Chaisson et al. (2004). The SA (Spectrum, read) method corrects
read given a set of k-mers Spectrum. Given a set of reads R and
a frequency threshold m, we define a spectrum [Spectrum =

Spectrumk(R, m)] as the set of all k-mers that appear at least m
times in reads from R. The set of such solid k-mers approximates
the set of all k-mers in the genome. We define a read as error free if
all of its k-mers are solid; otherwise, we attempt to make a read
error free by mutating a few nucleotides in the read (Pevzner et al.
2001; Chaisson and Pevzner 2008). We only consider substitution
mutations since there are few insertions/deletions in Illumina
reads.

We use a greedy heuristic to find the minimum number of
mutations to make every k-mer in a read solid. It records the
number of k-mers that are made solid for all three possible muta-
tions at every position in the read. The mutation that makes
the highest number of k-mers in the read solid is applied if it ‘‘so-
lidifies’’ more than t k-mers, where t is an internal threshold
(Chaisson and Pevzer 2008). This heuristic is iteratively applied
either until all k-mers in the read become solid, or until there are
no mutations that can solidify more than t k-mers. We output the
prefix of the read that is solid, or discard the read if none of it is
solid. This partitions all reads that are not discarded into a prefix
(accurate) and suffix (less accurate) that will be corrected at a later
stage. The set of reads is divided into two partitions: fixed and
unfixable. The fixed partition has reads that have a solid prefix,
and the unfixable partition contains reads with no solid k-mers. A
similar method is used in Butler et al. (2008).

In order to choose the multiplicity threshold m, we assume
that k-mers are generated from a mixture of two models: one
erroneous and the other correct (Fig. 3). If we assume positional
independence of errors in reads, the multiplicity of erroneous k-
mers follows a Poisson distribution, and the multiplicity of correct
k-mers follows a Poisson with a large mean that may be approximated
by a Gaussian. We choose m by fitting a Poisson and Gaussian
mixture model to the distribution of k-mer multiplicity and
finding the first local minimum of this distribution (Fig. 3).

Constructing the repeat graph on error-corrected read prefixes

We construct the de Bruijn graph on the error-corrected read
prefixes and further transform it into the repeat graph. Reads that
contain errors or SNPs in the middle create short undirected cycles
in the de Bruijn graph called bulges, and reads that contain errors
in the end create erroneous sources or sinks. Finally, some read
errors form chimeric reads by transforming the sequence in one
end of the read to that of a distant part of the genome, creating an
edge that erroneously connects two unrelated contigs. Trans-
formation of the de Bruijn graph into the repeat graph amounts to

Figure 2. From de Bruijn graphs to repeat graphs. The de Bruijn graph of a sequence contains a vertex for every k-mer in the sequence, and an edge
(u, v) for every pair of consecutive (overlapping) k-mers in the sequence (A). The condensed de Bruijn graph replaces all paths containing nonbranching
vertices by a single edge labeled by the sequence that generated the path (B). When the condensed de Bruijn graph is constructed on a genome, it
contains some small bulges and whirls representing repeats with slightly varying repeat copies (C). In the repeat graph, the bulges and whirls are removed
(E). The de Bruijn graph of reads contains additional spurious bulges and whirls caused by sequencing errors in reads (D). The goal of the Eulerian
assembly is to construct the repeat graph of reads (F) that approximates the repeat graph of the genome. Different studies use different terminology, e.g.,
the edges of these graphs are referred to as ‘‘blocks’’ in Zerbino and Birney (2008) and ‘‘unipaths’’ in Butler et al. (2008).

Chaisson et al.

338 Genome Research
www.genome.org

removing bulges, erroneous sources/sink edges, and chimeric
reads as described in Chaisson and Pevzer (2008).

In high-coverage projects, fixed reads provide sufficient
coverage across the genome to create a repeat graph that encodes
the entire genome. However, many sequencing projects still con-
tain low-coverage regions (often due to sampling bias). Since the
error correction step relies upon the redundancy of k-mers in
reads, the reads in regions of low coverage may be discarded at this
step, causing fragmentation of the assembled contigs. We found
that the unfixable partition often contains many reads from the
low-coverage regions, and their exclusion from the assembly
causes fragmentation of the repeat graph. In such cases it may be
necessary to use what we call ‘‘Second Chance Assembly’’—an as-
sembly of all reads discarded during error correction (see Supple-
mental material).

Simplifying the repeat graph by transforming mate-pairs into
mate-reads

Since the initial proposal to use mate-paired reads for shotgun
sequencing (Weber and Myers 1997), mate-paired reads have been
considered essential to de novo sequencing. Although in the past
the short-read mate-paired data have not been available, various
next-generation sequencing vendors have recently released mod-
ules for high-throughput production of mate-pairs. EULER-USR
utilizes the mate-paired reads by modifying the EULER-DB ap-
proach (Pevzner et al. 2001) for incorporating mate-pairs into the
Eulerian assembly framework.

When mate-pairs are available, the
input to the fragment assembly is a set of
mate-pairs: ‘‘readstart-GAP of length d-
readend.’’ The key idea of EULER-DB
(Pevzner and Tang 2001) is using the re-
peat graph to transform the mate-pairs
‘‘readstart-GAP of length d-readend’’ into
mate-reads ‘‘readstart-SEQUENCE of length
d-readend’’ by filling in the gap of length
d with an appropriate path in the repeat
graph. As a result, EULER-DB has an
ability to generate contiguous long reads
of length 2 � l + d from short mate-paired
reads of length l. These long mate-reads
are subjected to the traditional Eulerian
assembly afterward. Each mate-read cor-
responds to a mate-path between the
mate-paired reads mapped to the repeat
graph. In reality, the gap length is not
fixed, but varies from d � d to d + d.

While EULER-DB worked well for
traditional Sanger sequencing (Pevzner
et al. 2004), it needs to be modified for
short reads. The key parameter of EULER-
DB is the efficiency, the percentage of
mate-pairs successfully transformed into
mate-reads. This transformation is trivial
if there is a single path of length » d be-
tween readstart and readend in the repeat
graph, as the path is simply used to fill the
gap between the reads. This was indeed
the case for the overwhelming majority of
Sanger reads making EULER-DB rather ef-
ficient. However, the repeat graphs for
short reads are often very complex and in
some cases there are multiple paths of
length » d between paired reads (Fig. 4).

Pevzner and Tang (2001) described this problem and proposed an
iterative approach to solve it (see Fig. 4A in Pevzner and Tang
2001). EULER-SR (Chaisson and Pevzer 2008), Velvet (Zerbino and
Birney 2008), and ALLPATHS (Butler et al. 2008) all implement the
idea of filling the gap between mate-pairs using the repeat graph
and apply it to simulated data (e.g., cf. Fig. 4B in Pevzner et al.
2001 and Fig. 5C in Butler et al. 2008). Below, we apply EULER-DB
to real Illumina mate-paired reads and show how to extend
EULER-DB to analyze complex repeat graph characteristic for
short-read sequencing.

The ‘‘Breadcrumb’’ and ‘‘All paths definition’’ procedures in
Velvet and ALLPATHS are both aimed at filling up the gap between
the mate-paired reads in the repeat graph. For most mate-pairs in
E. coli there is only one path between mate-paired reads. In such
cases, the paths found by the Breadcrumb and All paths definition
methods are equivalent to EULER-DB. However, the remaining
mate-pairs are important for resolving complex tangles and Velvet
and ALLPATHS describe different approaches to addressing this
challenge. Below we describe how a simple extension of EULER-
DB addresses this problem.

When there are multiple paths in the repeat graph between
a mate-pair (readstart, readend), we may choose a path with maxi-
mum support from mate-pairs. Figure 4 illustrates the situation
when there are many ways to transform the mate-pair (readstart,
readend) into a mate-read using one of the paths between them. Let
edge estart(eend) be the edge where readstart begins (readend ends). A
mate-pair supports a path P between estart and eend if one of the
reads is in either estart or eend, and the other read is in an edge in P.

Figure 3. Choosing the multiplicity threshold for error correction. All k-mers appearing in the reads
are classified as correct if they appear in the genome, and incorrect otherwise. For a multiplicity x, let
correct(x)/incorrect(x) be the number of correct/incorrect k-mers with multiplicity x (the plots are
shown for 50-base long Illumina reads from a human BAC and k = 20). As expected, most high-mul-
tiplicity k-mers are correct and most low-multiplicity k-mers are incorrect. A Poisson/Gaussian mixture
model was fit to the distribution of all k-mer multiplicities in order to model the process of generating
incorrect (Poisson) and correct k-mers (Gaussian). To show the fit of the model, the k-mer multiplicities
were generated according to the estimated parameters l = 0.95, m = 25, and s = 9.38 with a mixing
parameter w = 0.95. One may find the multiplicity m with good separation between correct and in-
correct k-mers by estimating the first local minimum from the distribution of k-mer counts or the
minimum of the sum of the probabilities of the mixture model, a more smooth distribution. For
multiplicity threshold m = 5, only 0.6% of correct 20-mers have multiplicity <5 and only 0.3% of
incorrect 20-mers have multiplicity $5.

De novo assembly of short mate-paired reads

Genome Research 339
www.genome.org

The number of such mate-pairs for a path
P is denoted support(estart, eend, P). The
path P with the highest value of suppor-
t(estart, eend, P) is used to create the mate-
path P+ = (estart, P, eend). Note that due to
gaps in coverage there may be edges in
the path that are not supported. Fur-
thermore, errors in reads may create reads
that support edges not on the optimal
path. Therefore, we use a path with
maximal Support(P) among all paths be-
tween readstart and readend unless Sup-
port(P) falls below a MinSupport threshold.
Further details of transforming mate-
pairs and into mate-reads are given in the
Supplemental material.

Assembling error-prone reads (error
correction by threading)

Each read corresponds to a unique read
path in the de Bruijn graph representing
the sequence of the read. Since the repeat
graph approximates the de Bruijn graph,
a similar argument applies to the read-
paths in the repeat graph. A read may be
mapped to the de Bruijn graph by aligning
it to a closest subpath in the graph. Since
the de Bruijn graph is built on read pre-
fixes, the path corresponding to every
read prefix (prefix path) is known, thus
facilitating the read mapping. We may
find the path that the entire read maps to
by searching all subpaths continuing from
the known prefix path, a process we refer
to as threading reads through a graph.

In the case that threading is in-
voked, the EULER-USR(k, m, l) algorithm
proceeds in five steps. The user has
a choice of either specifying all three
parameters: k, m, and l, or specifying
a single parameter k. In the latter case,
EULER-USR selects the suitable parame-
ters m and l automatically.

1. Detecting accurate read prefixes and
correcting errors within them using
frequent k-mers (multiplicity m and
higher). This operation generates the
set of extremely accurate (nearly error-
free) read prefixes.

2. Constructing the repeat graph on er-
ror-corrected prefixes using k-mers.
This operation generates the set of k-
mer contigs.

3. Threading entire reads through the
repeat graph to extend the effective
read length. This operation generates
the set of accurate threaded reads.

4. Constructing the repeat graph on
threaded reads and generating l-mer
contigs using l-mers (l > k).

5. Simplifying the repeat graph by
transforming mate-pairs into mate-
reads.

Figure 4. (A) A fragment of a made-up repeat graph formed by three divergent copies of a repeat.
There are many possible paths from readstart to readend. To transform the mate-pair, readstar -GAP of
length d-readend into a mate-read readstart-SEQUENCE of length d-readend, we compute the support for
every path between readstart and readend and select a path with maximum support. In this example, the
‘‘red’’ path P1 has greater support than the ‘‘blue’’ path P2. (B) A fragment of the real repeat graph of E.
coli (constructed from ECOLI data set) illustrating that transformation of mate-pairs into mate-reads
may fail in some cases. Red edges represent unique (typically long) contigs, while black edges represent
repeats.

Chaisson et al.

340 Genome Research
www.genome.org

Once the repeat graph has been constructed on the (accurate) read
prefixes, we attempt to map every fixed read to the graph. How-
ever, while mapping of the (accurate) read prefixes is well-defined,
mapping of (inaccurate) read suffixes is ambiguous. EULER-USR
utilizes the repeat graph to correct errors in read suffixes.6

Every read prefix* suffix not discarded by error correction is
represented as a concatenation of its prefix and suffix. Since the
genome is a Eulerian traversal of its repeat graph, all substrings of
the genome map to paths in the repeat graph. While the accurate
prefix may be uniquely mapped to a path path(prefix) in the repeat
graph, it is not clear how to map the entire read prefix* suffix since
the suffix is inaccurate. We argue that to map prefix* suffix, one has
to choose one of the extensions of path(prefix) among all paths of
length n (read length) that begin with path(prefix). We denote the
set of such paths as P and argue that a path in P with the minimum
edit distance to the read represents the ‘‘best’’ mapping of the read
prefix * suffix to the repeat graph. While in many cases such
a thread-path path(prefix * suffix) may be used to correct the read
prefix * suffix, it has to be done with caution (see below).

If P has a single edge (Fig. 5A), we correct the read with the
sequence on the edge. However, these reads may not be used to
resolve repeats and thus are vestigial in terms of improving the
assembly. If P has multiple paths (Fig. 5B), we rank paths P1, P2, . . .
in P in the increasing order of their Hamming distances dist(P1),
dist(P2), . . . to the read prefix* suffix. While it is tempting to choose
the ‘‘optimal’’ path P1 for correcting errors in the read prefix* suffix,
it has to be done with caution. The problem is that the sequencing
errors in the inaccurate suffix may transform it into an alternative
string that maps to a ‘‘wrong’’ path in the repeat graph. We
therefore check that (1) the optimal path P1 is sufficiently similar
to prefix * suffix, and (2) the second best path P2 is sufficiently
dissimilar from prefix * suffix. To check these conditions, we use P
a parameter, f the expected error rate in read suffixes, and classify
a path P as similar to the read if dist(P) # f � |suffix|, and dissimilar
otherwise. If both conditions (1) and (2) are satisfied, we use P1 for
correcting the read prefix* suffix, otherwise we iteratively trim be-
fore the position of the last difference, and rethread the read until
both of these conditions are satisfied.

To obtain the final assembly that takes advantage of the
longer threaded reads, we build the repeat graph on l-mers for l > k
(where k was used to build the original repeat graph), so that
repeats of length l and shorter are resolved. The tradeoff between
the k-mer size and repeat resolution is that edges from the repeat
graph G of the genome (constructed on k-mers) will be split in the
repeat graph of reads if there is a gap longer than n � k between
read start positions, where n is the read length. When l > k, the
repeat graph of reads constructed on l-mers will be more frag-
mented than the repeat of reads constructed on k-mers. We pre-

vent fragmentation of the repeat graph of reads constructed on l-
mers by creating artificial reads x s y for every pair of adjacent
edges (contigs) x and y in the repeat graph of reads constructed on
k-mers (k-mer contigs). One can either set the maximal l = n � 2 or
empirically chose l to minimize fragmentation of the graph.

Results

Data sets

We used the following data sets to benchmark EULER-USR and
compare it to Velvet (Zerbino and Birney 2008), the most accurate
among the recently published short-read assemblers.

• ECOLI. A set of 29.8 million paired Illumina reads from the »4.6
Mb E. coli genome (2273 coverage). For benchmarking we
randomly selected 10 million reads from this data set. Mapping
of reads to the E. coli genome revealed that 87% are error-free.
The separation between mate-pairs is 145 6 25 bp.

• BAC50 and BAC35. A set of Illumina reads from an »170 Kb
human BAC generated at the Joseph Ecker laboratory at the Salk
Institute.7 This BAC was sequenced over several runs, allowing
us to generate an error profile that was not biased to a single run.
A total of 2 million 35–50 base reads were generated for this
BAC, resulting in 5003 coverage and allowing us to choose an
appropriate subset for a typical coverage benchmark. We ran-
domly selected reads resulting in 503 coverage by 50-nt-long
reads. Mapping these reads from the BAC to the reference se-
quence revealed that 20% are error free and 12% have only 1
error. Furthermore, 84% are error-free in the first 30 bases.
While EULER-USR is designed to work with longer reads, the
Velvet assembler is optimized for 35-base-long reads, and the
performance deteriorates for longer reads. In order to make a fair
comparison with Velvet we created a 35-nt read data set BAC35
by truncating 50-nt reads from BAC50 to 35 nt, resulting in 353

coverage of the BAC.

• simBAC100 and simECOLI100. A set of simulated 100 base
reads from the human BAC. This set was generated to check
whether EULER-USR can support extending sequencing reac-
tions well beyond their prime. We simulated reads by mapping
all 2 million reads from the data set generated at the Salk In-
stitute to the BAC, extending them up to 100 bases, and simu-
lating random errors. We further selected a set of resulting 100-
base reads so that the coverage was 2003 (to ensure that results
were not biased by gaps in coverage). Errors in the resulting 100-
base-long reads were simulated using a 1% error rate for the first
35 bases and 20% error rate for the remaining 65 bases. This
error profile leads to a challenging assembly problem without

attempting to model reads’ character-
istics for a particular technology. Our
method for correcting errors using
a repeat graph requires that the entire
genome is covered by the high-quality
prefixes of reads. The simBAC100 data
set includes as many reads as the
BAC50 data set to ensure that the en-
tire genome is represented in the re-
peat graph constructed on 35-base read
prefixes. The simECOLI100 is the set of
simulated 100-base reads from E. coli
(1003 coverage). Errors were added to

Figure 5. Mapping reads to the paths in the repeat graph. (A) A read maps to a single edge. (B) A read
maps to two paths, and the closest one is chosen. (C) A read may be mapped to two similar paths
implying that trimming is required.

6Error-corrected read suffixes only contribute to enlarging the assembled
contigs and do not contribute to base calling.

7This BAC has a repeat content representative of the rest of the human
genome.

De novo assembly of short mate-paired reads

Genome Research 341
www.genome.org

the reads according to the same 1%–20% error profile used for
simBAC100

• simBAC35. A set of 35-base read prefixes from simBAC100.
Because the simBAC100 data set uses simulated reads, it is not
directly comparable to the assemblies on real reads. Instead, to
perform proper comparison for the effect of threading reads, we
compare the assembly on 100-base (inaccurate) simulated reads
to the assembly on the 35-base (accurate) simulated reads.

Benchmarking

We compared five recently published de novo short-read assem-
blers aimed at short reads: SSAKE (Warren et al. 2007), SHARCGS
(Dohm et al. 2007), VCAKE (Jeck et al. 2007), Edena (Hernandez
et al. 2008), and Velvet (Zerbino and Birney 2008). Of all assem-
blers, Velvet performed the best in terms of N50 contig size.

SSAKE is designed for assembling error-free reads, and SHARCGS
is designed for reads with an error rate below 0.05%. Running these
two methods on Illumina reads resulted in filtering of all reads on
a preprocessing step or (if preprocessing is turned off) in an inferior
assembly quality. VCAKE is an improvement of SSAKE and is able to
assemble reads with higher error rate. For the BAC35 data set,
VCAKE, Velvet, Edena, and EULER-USR produced similar assem-
blies. However, the quality of assemblies generated by VCAKE or
Edena deteriorate with increasing the read length (BAC50 data set),

producing more fragmented assemblies than Velvet. Furthermore,
the assemblies for the ECOLI data set by both Velvet and EULER-
USR resulted in doubling the N50 contig size as compared with
VCAKE or Edena. We therefore decided to limit the detailed
benchmarking to Velvet only.

A goal in the Eulerian approach is to construct the repeat
graph Gk(Reads) on the set of Reads that best approximates the
‘‘ideal’’ repeat graph Gk(Genome) of the Genome (Chaisson and
Pevzer 2008) (denoted as REPEAT-GRAPH[k] in the follow-up
Tables and Figs.), as every Eulerian path in the repeat graph cor-
responds to a possible solution of the fragment assembly problem.
However, due to fragmentation, the REPEAT-GRAPH statistics are
misleading, because the longer the contigs are, the more likely
they are to be fragmented by low-coverage regions (note that
fragmentation of long contigs leads to a quick deterioration of the
N50 size). Therefore, uneven distribution of reads over the ge-
nome may turn approximating Gk(Genome) into an unattainable
goal. To set up a more realistic goal, we transform the set Reads
into the error-free set PerfectReads (by substituting every read with
the sequence of the genome it maps to). In the absence of mate-
pairs, the repeat graph Gk(PerfectReads) constructed on this set of
reads represents the best assembly our assembler aims for while
assembling the real reads (referred to as OPTIMAL-ASSEMBLY in
the follow-up Tables and Figures).

How are assemblies improved by mate-paired reads?

To benchmark EULER-USR and Velvet on the ECOLI data set, we
first evaluated assembly with unpaired reads in order to later gage
the effect of mate-pairs. Both the EULER-USR and Velvet (k = 27)
assemblies were close to the theoretically optimal assembly (Table
1; Fig. 6) with similar N50 sizes (20 K for EULER-USR and 16 K for
Velvet) and no misassemblies. The contigs longer than 500 bases
in EULER-USR assembly (those likely to be nonrepetitive) contain
six mismatches, three insertions, and one deletion (30 mismatches,
three insertions, and three deletions in the Velvet assembly).8

Table 1 and Figure 6 compare EULER-USR and Velvet and il-
lustrate that mate-pairs significantly improve the assemblies. The
N50 length for E. coli assembly increases from 16 to 45 K for Velvet
and from 19 to 62 K for EULER-USR. EULER-USR generated 127
contigs longer than 1000 bp, which is comparable to the typical
number of contigs resulting from prefinished Sanger assembly
of bacterial genomes (see Pevzner et al. 2004 and http://nbcr.
sdsc.edu/euler/benchmarking/bact.html). Only two (relatively
short) contigs produced by EULER-USR were misassembled. An

Table 1. A comparison of assemblies of E. coli 35-base Illumina reads, unpaired and mate-paired

Assembly N50
Length (# contigs)

>20,000 nt
Length (# contigs)

>5000 nt
Length (#contigs)

>1000 nt

REPEAT-GRAPH(30) 22,173 2,432,772 (69) 4,232,578 (237) 4,484,685 (331)
EULER-USR unpaired 20,096 2,233,252 (68) 4,212,353 (249) 4,490,810 (355)
VELVET unpaired 16,424 1,953,255 (59) 4,068,326 (262) 4,484,065 (416)
EULER-USR mate-pairs 62,015 4,207,753 (72) 4,481,764 (96) 4,524,074 (113)
VELVET mate-pairs 45,427 3,800,552 (79) 4,419,542 (131) 4,507,932 (167)

N50: The size of the contig such that 50% of the assembly is contained in contigs of size N50 or greater. Length (# contigs) (>20,000 nt), total length of all
contigs longer than 20,000 and total number of such contigs. We found that Velvet produces optimal results when run as Velvet(27,5).

Figure 6. Comparison of EULER-USR and Velvet using both paired reads
and the same reads with mate-pair information removed (ECOLI data set).
The contigs are ordered in the decreasing order of sizes and the cumu-
lative size of x longest contigs are shown on the y-axis.

8This analysis underestimates the base-calling errors by limiting them to long
contigs and thus avoiding the most difficult repeated regions. Nevertheless,
the base-calling accuracy appears to be comparable or even better than the
accuracy of high-coverage Sanger sequencing.

Chaisson et al.

342 Genome Research
www.genome.org

alignment of the assemblies to the E. coli genome is shown in the
Supplemental material.

How are assemblies improved by read threading?

When estimating input parameters for EULER-USR, our mixture
model suggested the multiplicity threshold m = 5 for the BAC50
data set with k-mer size 20. The accuracy of error correction was
evaluated by mapping error-corrected reads to the BAC (Table 2).
From the original sets of reads, 91.3% of the BAC35 data set, 88.6%
of the BAC50 data set, and 98.0% of the simBAC100 data set were
retained after error correction based on Spectral Alignment. Dur-
ing graph correction, the removal of certain edges from the graph
truncates the reads that map to these edges, further shortening the
average read length. While most reads in this data set were trim-
med only by a few nucleotides, others become rather short and
need to be extended with threading as described above.

Table 3 presents the statistics of the N50 contig size, as well as
the cumulative contig size for various data sets (reported for con-
tigs longer than 1000, 500, and 100 bases). Since the N50 statistic
is limited, we show the differences in assemblies by plotting the
cumulative length of contigs ordered by size (Fig. 7). Figure 7
shows how longer threaded reads improve the assembly quality
for both real and simulated reads.9 Figure 7 illustrates that while
Velvet and EULER-USR show similar results for the BAC35 data set
(no read threading), the EULER-USR assembly improves for BAC50
and simBAC100 data sets (due to its ability to utilize the error-
prone reads), while Velvet assembly hardly changes. Indeed, even
with a modest increase in read length from 35 to 50 nt, read
threading increases N50 contig size by 13% and the total length of
long contigs (longer than 1000 nt) by 22%. Figure 8 shows how
assembly improves with increase in read coverage when assem-
bling the E. coli genome and leads to a conclusion that the cov-
erage increase beyond 553 results only in a modest increase in
assembly quality.

When the BAC50 data set is assembled without threading
reads, the N50 contig size is 1752, with a net assembly size
of 171,301. Read threading only improves the quality of assembly
by correcting reads that pass through three or more edges (most
reads map to one or two edges in the repeat graph). Table 4
shows the number of reads that are correctly fixed with threading
and how many edges they are threaded through for the BAC50
data set (see Supplemental material for analysis of simBAC100
data set). Although a very small fraction of reads are threaded
through more than three edges, they improve the quality of
assembly.10

Since bacterial genomes have a compact gene structure, we
analyzed how many genes are captured within contigs constructed
by various programs. Even though the repeat graph of E. coli is
fragmented into many contigs (over 500 for REPEAT-GRAPH[30]),
many contigs are long, and contain multiple genes. We mapped
the contigs of REPEAT-GRAPH, EULER-USR, and Velvet assemblies
to the genome, and counted the number of genes that contained
entirely within a contig. Table 5 illustrates that contigs produced
by Velvet and EULER-USR capture a large number of bacterial
genes, thus enabling various applications. For example, one can
perform MS/MS proteomics analysis of bacterial genomes with
Illumina contigs almost as efficiently as with completed genomes
(Gupta et al. 2007).

The E. coli genome contains relatively few repetitive elements
compared with the human genome, and so the longer reads
should be able to resolve more repeats in E. coli than in the human
BAC. In the simECOLI100 data set, the usable read length was
increased from an average of 50.5 to 98.8 nt (Table 2) by threading.
When we compare the assembly on the simulated read prefixes to
the threaded reads, the N50 contig size more than doubles to »45
K. This indicates that the announced increase in Illumina read
length to 100 nt (planned for 2009) will lead to significant
improvement in assembly in the case of unpaired reads. While it
is an important improvement in applications like single-cell
sequencing (where the mate-paired protocols are not available yet),
it remains unclear whether the read length (as opposed to span)
matters in the case of mate-paired reads (i.e., would increasing the
length of mate-paired reads from 35 to 100 nt lead to significant
improvements in assembly if the span remains fixed?).

Does the read length matter?

The availability of two methods to resolve repeats (mate-pairs
and threading) brings the question as to whether they may be
used in conjunction to further improve assemblies. To test this,
we simulated mate-pairs with the span 300 6 30 nt in the genomes
of E. coli and S. cerevisiae. The read length r was fixed in each
simulated data set, with a minimum read length of 25 nt and
maximum length 100 nt. The goal was to evaluate whether
the quality of assembly (e.g., N50(r), N50 length for reads of
length r) with longer reads improves as compared to the quality of
assembly with shorter reads (e.g., whether 100 nt mate-paired
reads result in a better assembly than 35 nt reads). We define the
read-length barrier as the read length after which the quality
of assembly does not significantly improve (e.g., N50 does not in-
crease by >5%).

Table 2. Error rate (per read base) and average length of reads on different stages of the EULER-USR threading algorithm

Original reads SA corrected reads Threaded reads after graph correction

Data set Length Error rate (%) Average length Error rate (%) Retained reads (%) Average length Average rate (%)

BAC35 35 0.92 34.9 0.01 91.3 34.9 0.004
BAC50 50 4.36 46.7 0.04 88.6 49.3 0.049
simBAC100 100 13.3 46.6 0.07 98.0 94.5 0.050
simECOLI100 100 12.6 50.5 0.003 99.6 98.8 0.017

The error rate is computed by mapping reads to the genome. We compute the length and error rate for the original reads, reads corrected by Spectral
Alignment that are retained after graph correction, and finally, after threading. The increased error rate after threading is due to threading reads through
their consensus sequence in the repeat graph (rather than de Bruijn graph).

10For BAC50 data set, EULER-USR has 20 mismatches and two insertions,
a higher error rate as compared with ECOLI data set.

9In some cases the statistics for EULER-USR is slightly better than for OPTIMAL-
ASSEMBLY due to subtle differences in contig reporting.

De novo assembly of short mate-paired reads

Genome Research 343
www.genome.org

The error-free mate-paired reads were simulated starting at
every genomic position and each simulated data set with reads of
length r were assembled with EULER-USR (k-mer size 24). To
evaluate the quality of assemblies, we used N50 contig size and
efficiency (the percentage of mate-pairs transformed into mate-
reads). The efficiency should be analyzed with caution because
only mate-pairs spanning multiple edges in the repeat graph
contribute to improving the assembly (a similar effect is illustrated
in Table 4 for single reads). In the E. coli assembly of Illumina
reads, this was only 3.9% of all mate-pairs. As a result, for the

simulated E. coli assembly, the efficiency is rather high for all read
lengths (varying from 97.8% for r = 25 to 99.0% for r = 55, and to
99.2% for r = 100). However, even a small increase in efficiency
translates into significant increase in N50 statistics (varying from
»40 K for r = 25 to »60 K for r = 55). Therefore, small increases in
efficiency may reflect a very significant increase in the number of
‘‘useful’’ mate-pairs, i.e., mate-pairs that improve the assembly. To
better gage the contribution of such ‘‘useful’’ mate-pairs, we in-
troduce the relative efficiency, the percentage of useful mate-pairs
transformed into mate-reads (we call a mate-pair useful if its reads

Figure 7. Comparison of EULER-USR (threading) and Velvet. In each plot, the contigs are ordered in the decreasing order of size and the cumulative size
of x longest contigs are shown on the y-axis (only contigs longer than 100 bases are shown). See Table 3 for the choice of parameters of all programs in
these plots. For all assemblies of the BAC, the locations of the contigs closest to lengths 5000, 2000, 1000, and 500 bases are shown with a ‘‘+’’ mark.

Table 3. Assembly statistics of various data sets of Illumina reads

Assembly method/data set N50
Length

(# contigs) >1000
Length

(# contigs) >500
Length

(# contigs) >100

BAC35
REPEAT-GRAPH(25) 1869 97,946 (34) 126,774 (74) 153,378 (194)
OPTIMAL-ASSEMBLY(25) 1609 92,758 (39) 119,773 (78) 153,348 (225)
EULER-USR(20,2,25) 1786 89,905 (39) 118,576 (80) 147,227 (210)
VELVET(21,5) 1428 87,551 (43) 113,522 (80) 138,554 (173)

BAC50
REPEAT-GRAPH(40) 4168 143,224 (39) 160,679 (64) 175,246 (128)
OPTIMAL-ASSEMBLY(40) 2023 129,392 (55) 152,551 (87) 176,491 (193)
EULER-USR(20,5,40) 2022 119,489 (45) 148,319 (86) 171,082 (164)
VELVET(31,5) 1381 84,292 (39) 112,886 (78) 139,176 (169)

simBAC35
REPEAT-GRAPH(25) 1869 97,946 (34) 126,774 (74) 153,378 (194)
OPTIMAL-ASSEMBLY(25) 1847 95,180 (35) 159,359 (85) 175,305 (242)
EULER-USR(20,5,25) 1818 98,187 (39) 129,671 (85) 162,109 (242)
VELVET(21,5) 1844 97,174 (36) 122,816 (73) 144,578 (153)

simBAC100
REPEAT-GRAPH(50) 7163 167,112 (31) 172,990 (39) 175,444 (53)
OPTIMAL-ASSEMBLY(50) 3971 162,129 (47) 169,794 (58) 176,908 (94)
EULER-USR(20,5,50) 2639 140,718 (47) 163,244 (80) 175,900 (135)
VELVET(31,5) 695 36,796 (22) 77,557 (80) 120,147 (241)

simECOLI100
REPEAT-GRAPH(50) 59,656 4,519,592 (140) 4,528,404 (152) 4,583,803 (533)
EULER-USR(20,10,50) 44,710 4,519,083 (182) 4,531,837 (200) 4,562,551 (366)

(N50) The size of the contig such that 50% of the assembly is contained in contigs of size N50 or greater. Length (>1000), Length (>500), and Length
(>100): the total length of all contigs longer than 1000, 500, and 100 nt, respectively. For Velvet (k-mer size, coverage) we found that the coverage cutoff
t = 5 maximizes the assembly quality. The effect of threading reads on assembly quality may be seen by comparing simBAC35 and simBAC100. The rows
describing REPEAT-GRAPH(50) and OPTIMALASSEMBLY(50) are identical, since the reads cover the entire BAC in simBAC100 data set. In all tests there
was a single misassembly (in simECOLI100 data set).

Chaisson et al.

344 Genome Research
www.genome.org

reside on different edges). For the yeast data set, the relative effi-
ciency varies from 61% for r = 25 to 80% for r = 55 (the maximum
value among all read lengths is 81%). These results indicate that
for the yeast data set, efficiency hardly changes after the read
length exceeds »60 nt.

Our attempt to answer the question ‘‘Does the read length
matter?’’ is limited in many aspects (e.g., reads were simulated
error-free, and coverage was perfectly uniform) and it only answers
the question of whether the read length matters for EULER-USR
assemblies (rather than for a theoretically optimal assembly with
mate-pairs).11 However, it reveals that for the E. coli, the assembly
hardly improves after the read length exceeds 35 nt (efficiency =

98.7%, N50 contig size » 60 Kb). The assembly deteriorates when
the read length decreases from 35 to 25, indicating that the read-
length barrier for E. coli (with the chosen simulation parameters) is
»35 nt.12

For the S. cerevisiae genome, the assembly quality only
slightly improves after the read length exceeds 60 nt (N50 is »70 K
for r = 60 but drops to »62 K at r = 45 and to »41 K at r = 25). It
indicates that the read-length barrier for S. cerevisiae (with chosen
simulation parameters) is »60 nt.

Discussion
The recent addition of mate-paired reads to the arsenal of short-
read technologies opened the possibility of assembling complex
genomes for a fraction of the cost of the traditional Sanger se-

quencing. We demonstrated that the
Eulerian approach is well suited for as-
sembling mate-paired short reads by
transforming mate-pairs into mate-reads
using repeat graph. We further com-
plemented the approach from Pevzner
et al. (2001) by selecting the most ‘‘sup-
ported’’ mate-reads to resolve some diffi-
cult cases when a mate-pair may be
transformed into multiple mate-reads.

In addition to incorporating mate-
pairs into fragment assembly, we also
show that the conventional wisdom of
‘‘read trimming’’ may be substituted by
threading to correct error-prone read
tails. We demonstrate that if a sequenc-
ing technique ‘‘suffers’’ from quality
degradation along the length of a read, it
may still be used effectively in de novo
assembly. Despite the fact that short-read
assemblies are rather fragmented, we
demonstrate that most bacterial genes
map to single contigs, thus enabling gene
discovery and annotation of bacterial
genomes.

The Eulerian approach models the
error-prone suffixes of the reads as short
edges to vertices of out-degree zero. All
recently developed short-read assemblers
remove such edges from the graph (e.g.,

via the erosion procedure in Pevzner et al. 2001), thus essentially
discarding information contained in the error-prone read suffixes.
Therefore, even if the reads are not explicitly trimmed, they are
implicitly trimmed after the de Bruijn graph is constructed (e.g.,
using the ‘‘clipping’’ procedure in Velvet [Zerbino and Birney
2008] or ‘‘removal of hanging-ends’’ procedure in ALLPATHS
[Butler et al. 2008]). EULER-USR differs from these approaches by
utilizing information in the error-prone read prefixes.

Our study on the use of mate-paired reads in conjunction
with read threading revealed that there exists some synergy be-
tween these two approaches when the read length remains below
the read-length barrier. While mate-pairs represent the major
factor in improving the assembly quality, read threading contrib-
utes to further improvements in assembly. The next challenge
for short-read technologies is to assemble larger and more complex
genomes. The ability to exploit any information possible to

Figure 8. Statistics of assembly for various read coverage (E. coli genome). The cumulative length of
contigs in order of decreasing length is shown for the 1000 longest contigs. The cumulative length of
contigs of the repeat graph on the genome is shown as a dashed line.

Table 4. The results of read threading for BAC50 data set

No. reads Total

Reads
spanning

one
edge

Reads
spanning

two
edges

Read
Spanning
>2 edges

Average
read length

(after
threading)

Correct/correct 100,942 95,781 2161 2550 50
Correct/incorrect 207 174 27 6 50
Incorrect/correct 55,515 52,408 1464 1643 42
Incorrect/incorrect 347 254 33 60 45

Reads are classified into four categories: correct/correct (if threading does
not change a correct read), correct/incorrect (if threading turns a correct
read into incorrect), incorrect/correct (if threading turns an incorrect read
into correct), and incorrect/incorrect (if threading turns an incorrect read
into an incorrect read). The table classifies reads in each of these four
categories depending on how many edges in the repeat graph they span.

11The theoretically optimal algorithms for assembling mate-paired reads re-
main unknown even for error-free reads and fixed distance between mate-
pairs (Medvedev et al. 2007).
12We found that assemblies of mate-pairs with average span d 6 s may be
sensitive to the parameter even s for the same d. For example, simulated
assemblies with error-free reads may have lower quality than the real as-
semblies with the same d but different s.

De novo assembly of short mate-paired reads

Genome Research 345
www.genome.org

resolve repeats will become important when assemblers move to
mammalian genomes.

Acknowledgments
This research was supported by NIH grant 1R21HG004130-01 and
NSF grant EIA-0303622. We thank Dirk Evers, Klaus Maisinger,
and Jacques Retief for insightful discussions about the Illumina
technology, and to Xiaohua Huang and Eric Roller for many dis-
cussions on emerging next-generation sequencing technologies.
We are grateful to Ronan O’Malley and Joseph Ecker for providing
us with the BAC reads.

References

Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wei, G., Chepelev,
I., and Zhao, K. 2007. High-resolution profiling of histone
methylations in the human genome. Cell 129: 823–837.

Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander,
E.S., Nusbaum, C., and Jaffe, D.B. 2008. ALLPATHS: De novo assembly of
whole-genome shotgun microreads. Genome Res. 18: 810–820.

Chaisson, M.J. and Pevzner, P.A. 2008. Short read fragment assembly of
bacterial genomes. Genome Res. 18: 324–330.

Chaisson, M.J., Tang, H., and Pevzner, P.A. 2004. Fragment assembly with
short reads. Bioinformatics 20: 2067–2074.

Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. 2007. SHARCGS,
a fast and highly accurate short-read assembly algorithm for de novo
genomic sequencing. Genome Res. 17: 1697–1706.

Gupta, N., Tanner, S., Jaitly, N., Adkins, J.N., Lipton, M., Edwards, R.,
Romine, M., Osterman, A., Bafna, V., Smith, R.D., et al. 2007. Whole
proteome analysis of post-translational modifications: Applications of
mass-spectrometry for proteogenomic annotation. Genome Res. 17:
1362–1377.

Hernandez, D., Franois, P., Farinelli, L., Osteras, M., and Schrenzel, J. 2008.
De novo bacterial genome sequencing: millions of very short reads
assembled on a desktop computer. Genome Res. 18: 802–809.

Hillier, L.W., Marth, G.T., Quinlan, A.R., Dooling, D., Fewell, G., Barnett, D.,
Fox, P., Glasscock, J.I., Hickenbotham, M., Huang, W., et al. 2008.
Whole-genome sequencing and variant discovery in C. elegans. Nat.
Methods 5: 183–188.

Huang, X., Wang, J., Aluru, S., Yang, S., and Hillier, L. 2003. PCAP: A whole
genome assembly program. Genome Res. 13: 2164–2170.

Idury, R.M. and Waterman, M.S. 1995. A new algorithm for DNA sequence
assembly. J. Comput. Biol. 2: 291–306.

Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P.,
Zody, M.C., and Lander, E.S. 2003. Whole-genome sequence assembly
for mammalian genomes: Arachne 2. Genome Res. 13: 91–96.

Jeck, W.R., Reinhardt, J.A., Baltrus, D.A., Hickenbotham, M.T., Magrini, V.,
Mardis, E.R., Dangl, J.L., and Jones, C.D. 2007. Extending assembly of
short DNA sequences to handle error. Bioinformatics 23: 2942–2944.

Margulies, M. and Egholm, M. 2005. Genome sequencing in
microfabricated high-density picolitre reactors. Nature 437: 326–327.

Medvedev, P., Georgiou, K., Myers, G., and Brudno, M. 2007.
Computability of models for sequence assembly. In Proceedings of the
Seventh International Workshop, pp. 289–301. WABI, Philadelphia, PA.

Myers, E.W. 2005. The fragment assembly string graph. Bioinformatics
Suppl 2: ii79–ii85. doi: 10.1093/bioinformatics/bti7114.

Ng, P., Tan, J.J., Ooi, H.S., Lee, Y.L., Chiu, K.P., Fullwood, M.J., Srinivasan,
K.G., Perbost, C., Du, L., Sung, W.K., et al. 2006. Multiplex sequencing
of paired-end ditags (MS-PET): A strategy for the ultra-high-throughput
analysis of transcriptomes and genomes. Nucleic Acids Res. 34: e84. doi:
10.1093/nar/gki444.

Pevzner, P.A. 1989. 1-Tuple DNA sequencing: Computer analysis. J. Biomol.
Struct. Dyn. 7: 63–73.

Pevzner, P.A. and Tang, H. 2001. Fragment assembly with double-barreled
data. Bioinformatics 17: S225–S233.

Pevzner, P.A., Tang, H., and Waterman, M.S. 2001. A Eulerian path
approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98: 9748–
9753.

Pevzner, P.A., Tang, H., and Tesler, G. 2004. De novo repeat classification
and fragment assembly. Genome Res. 14: 1786–1796.

Schones, D.E. and Zhao, K. 2008. Genome-wide approaches to studying
chromatin modifications. Nat. Rev. Genet. 9: 179–191.

Tammi, M.T., Arner, E., Kindlund, E., and Andersson, B. 2003. Correcting
errors in shotgun sequences. Nucleic Acids Res. 31: 4663–4672.

Warren, R.L., Sutton, G.G., Jones, S.J.M., and Holt, R.A. 2007. Assembling
millions of short DNA sequences using SSAKE. Bioinformatics 23: 500–501.

Weber, J.L. and Myers, E.U. 1997. Human whole genome shotgun
sequencing. Genome Res. 7: 401–409.

Whiteford, N., Haslam, N., Weber, G., Prugel-Bennett, A., Essex, J.W.,
Roach, P.L., Bradley, M., and Neylon, C. 2005. An analysis of the
feasibility of short read sequencing. Nucleic Acids Res. 33: e171. doi:
10.1092/nar/gni171.

Zerbino, D.R. and Birney, E. 2008. Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18: 821–829.

Received March 26, 2008; accepted in revised form November 17, 2008.

Table 5. Mapping of the 4136 genes from E. coli into theoretical
repeat graph and repeat graph constructed by EULER-USR and
Velvet for the ECOLI data set

Method REPEAT-GRAPH EULER-USR VELVET

Complete genes 3937 (95.2%) 3956 (95.7%) 3912 (94.6%)

See Table 1 for a description of the parameters. We show the number of
genes that are contained entirely within the constructed contigs.

Chaisson et al.

346 Genome Research
www.genome.org

